24,234 research outputs found

    A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment

    Get PDF
    Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent

    Satellite versus ground-based estimates of burned area: a comparison between MODIS based burned area and fire agency reports over North America in 2007

    Get PDF
    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires across North America, we found the Global Fire Emissions Database Version 4 (GFED4) estimated about 80% of the burned area logged in ground-based Incident Status Summary (ICS-209) over 8-day analysis windows. Linear regression analysis found a slope between GFED and ICS-209 of 0.67 (with R = 0.96). The agreement between these data sets was found to degrade at short timescales (from R = 0.81 for 4-day to R = 0.55 for 2-day). Furthermore, during large burning days (> 3000 ha) GFED4 typically estimates half of the burned area logged in the ICS-209 estimates

    Production of large transverse momentum dileptons and photons in pppp, dAdA and AAAA collisions by photoproduction processes

    Full text link
    The production of large PTP_{T} dileptons and photons originating from photoproduction processes in pppp, dAdA and AAAA collisions is calculated. We find that the contribution of dileptons and photons produced by photoproduction processes is not prominent at RHIC energies. However, the numerical results indicate that the modification of photoproduction processes becomes evident in the large PTP_{T} region for pppp, dAdA and AAAA collisions at LHC energies.Comment: 10 figure

    Jets associated with Z^0 boson production in heavy-ion collisions at the LHC

    Full text link
    The heavy ion program at the LHC will present unprecedented opportunities to probe hot QCD matter, that is, the quark gluon plasma (QGP). Among these exciting new probes are high energy partons associated with the production of a Z^0 boson, or Z^0 tagged jets. Once produced, Z^0 bosons are essentially unaffected by the strongly interacting medium produced in heavy-ion collisions, and therefore provide a powerful signal of the initial partonic energy and subsequent medium induced partonic energy loss. When compared with theory, experimental measurements of Z^0 tagged jets will help quantify the jet quenching properties of the QGP and discriminate between different partonic energy loss formalisms. In what follows, I discuss the advantages of tagged jets over leading particles, and present preliminary results of the production and suppression of Z^0 tagged jets in relativistic heavy-ion collisions at LHC energies using the Guylassy-Levai-Vitev (GLV) partonic energy loss formalism.Comment: To appear in the proceedings of the 2010 Winter Workshop on Nuclear Dynamics, which was held in Ocho Rios, Jamaica, mon

    On the Application of Gluon to Heavy Quarkonium Fragmentation Functions

    Get PDF
    We analyze the uncertainties induced by different definitions of the momentum fraction zz in the application of gluon to heavy quarkonium fragmentation function. We numerically calculate the initial g→J/ψg \to J / \psi fragmentation functions by using the non-covariant definitions of zz with finite gluon momentum and find that these fragmentation functions have strong dependence on the gluon momentum k⃗\vec{k}. As ∣k⃗∣→∞| \vec{k} | \to \infty, these fragmentation functions approach to the fragmentation function in the light-cone definition. Our numerical results show that large uncertainties remains while the non-covariant definitions of zz are employed in the application of the fragmentation functions. We present for the first time the polarized gluon to J/ψJ/\psi fragmentation functions, which are fitted by the scheme exploited in this work.Comment: 11 pages, 7 figures;added reference for sec.

    Shadowing Effects on the Nuclear Suppression Factor, R_dAu, in d+Au Interactions

    Full text link
    We explore how nuclear modifications to the nucleon parton distributions affect production of high transverse momentum hadrons in deuteron-nucleus collisions. We calculate the charged hadron spectra to leading order using standard fragmentation functions and shadowing parameterizations. We obtain the d+Au to pp ratio both in minimum bias collisions and as a function of centrality. The minimum bias results agree reasonably well with the BRAHMS data while the calculated centrality dependence underestimates the data and is a stronger function of p_T than the data indicate.Comment: 18 pages, 3 figures, final version, Phys. Rev. C in pres

    Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST

    Full text link
    Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{\epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).Comment: 6 pages, 3 figures, submitted to PR

    Consequences of a warming climate for social organisation in sweat bees

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The progression from solitary living to caste-based sociality is commonly regarded as a major evolutionary transition. However, it has recently been shown that in some taxa, sociality may be plastic and dependent on local conditions. If sociality can be environmentally driven, the question arises as to how projected climate change will influence features of social organisation that were previously thought to be of macroevolutionary proportions. Depending on the time available in spring during which a foundress can produce worker offspring, the sweat bee Halictus rubicundus is either social or solitary. We analysed detailed foraging data in relation to climate change predictions for Great Britain to assess when and where switches from a solitary to social lifestyle may be expected. We demonstrate that worker numbers should increase throughout Great Britain under predicted climate change scenarios, and importantly, that sociality should appear in northern areas where it has never before been observed. This dramatic shift in social organisation due to climate change should lead to a bigger workforce being available for summer pollination and may contribute towards mitigating the current pollinator crisis.RS was funded by the Swiss National Science Foundation (Grant PA00P3_139731), and CA was supported by a Nuffield Student Bursary. Fieldwork was funded by a NERC grant to J. Field and R. Paxton

    Strategy towards Mirror-fermion Signatures

    Get PDF
    The existence of mirror fermions interacting strongly under a new gauge group and having masses near the electroweak scale has been recently proposed as a viable alternative to the standard-model Higgs mechanism. The main purpose of this work is to investigate which specific experimental signals are needed to clearly differentiate the mirror-fermion model from other new-physics models. In particular, the case is made for a future large lepton collider with c.o.m. energies of roughly 4 TeV or higher.Comment: 30 Latex pages, 2 postscript figure
    • 

    corecore